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INELASTIC COLUMN BEHAVIOR !

By Joux K. DuBerc and Trosmas W. WiLpgr, III

SUMDMARY

The significant findings of a theoretical study of column
beharior in the plastic stress range are presented. YWhen the
beharior of a straight column is regarded as the limiting behavior
af an imperfect column as the initial imperfection (lack of
straightness) approaches zero, the departure from the siraight
configuration oeccurs at the tangent-modulus load. Without such
a concept of the behavior of a straight column, one s led to the
unrealistic conclusion that lateral deflection of the column can
begin at any load between the tangent-modulus value and the
Euler load, based on the original elastie modulus.

The behavior of a column with vanishing initial lack of
~straightness at loads beyond the tangent-modulus load depends
upon the stress-strain curre for the material. A family of
curres showing load against lateral deflection is presented for
idealized H-section columns of various lengthe and of various
materials that hare a systematic rariation of their stress-strain
curves. These curves show that, for columns in which the
material stress-strain curves depart gradually from the initial
elustic slope as is characteristic of stainless steels, the maxrimum
column loads may be significantly abore the tangent-modulus
load. If the departure from the elastic curve is more abrupt,
such as for the high-strength aluminum or magnesium alloys,
the maximum load 1s only slightly above the tangent-modulus
load.

INTRODUCTION

Until recently, the double-modulus theory had generally
been accepted as the correct theory of column failure in the
inelastic range of stress. This theory, originally developed
by Considére and Engesser and later extended by Von
Kdrmén (see reference 1 for a discussion of this development),
predicts that the load at which bending starts and the maxi-
mum load that a pin-ended column can support are the same
and can be obtained from the Euler equation

by substitution of a reduced modulus for Young’s modulus.
(The symbols used in this report are presented in appendix
A The reduced modulus is obtained by assuming that,
at the start of bending of an originally straight column, the
direction of straining of the elements on the convex side of

the column reverses. Yhen such reversel of strain occurs
in the plastic range, increments of stress are related to
mcrements of strain by the original elastic modulus. The
part of the cross section over which the strains reverse is
determined by the condition that there shall be no change in
load during the bending process.

In 1947, Shanley (reference 2) was able to show for a

simplified column that, if the load is allowed to increase
during bending, bending of the column can start at a lower
load than the reduced-modulus load. The load for which
he showed this to be true was the tangent-modulus load,
which can be obtained from the Euler equation by substitu-
tion of the tangent modulus in place of Young's modulus.
Shanley drew conclusions concerning the behavior of columns
on the basis of the behavior of the simple model and certain
experimental observations.

In order to clarify the behavior of columns in the plastie
range, & theoretical study was made with the following
threefold purpose:

(1} To establish the load at which a column starts to

deflect, designated the critical load in this report

(2) To study the mechanism of column action beyond the

critical load

(3) To establish the relation between the maximum column

load and the stress-strain curve for the material

In order to make this study, two models were chosen: One

model, similar to Shanley’s, was & spring-supported rigid

column—that is, one that had a concentrated flexibility— -
and the other, an idealized H-section ecolumn that had its

flexibility distributed along its length and consisted of two

concentrated flanges separated by & web of negligible area

but of infinite shear rigidity.

The significant results of this study were presented without
proof at the Structures Session, Eighteanth Annual Meeting
of the Institute of the Aeronautical Sciences held January
23-26, 1950, in New York, and were subsequently published
by that organization as reference 3. The purpose of the
present report is to give the details of the analysis which were
not included in reference 8. Since the original presentation,
several other investigators have published the results of their
researches on inelastic column action. (See references 4 to
6.) The results in these references are in substantial agree-
ment with those obtsined in this report.

! Supersedes NACA TN 2257, “Inelastic Column Bebavior” by John E. Duberg and Thomss W. Wilder, III, 1851
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THE CRITICAL LOAD

In the elastic range of stress the critical load for a straight
column—which must again be emphasized as having the
restricted meaning in this report as the load at which bending
starts—is unique and is given by the well-known Euler
formula. The situation is not so simple in the inelastic range
of stress, however, and the source of the difficulty lies in the
character of the stress-strain relations in the plastic range.
In the inelastic range of stress, at least for uniaxial states of
stress, increments in stress are related to increments in strain
by the tangent modulus of the material, but decreases in
stress are related to strain by the original elastic modulus.

In order to demonstrate the lack of uniqueness in defining
a load at which bending starts in the inelastic range, the
simple spring-supported column shown in figure 1 was
analyzed. Details of the analysis are presented in appendix
B. The inverted tee is rigid and free to rotate and translate

vertically about the intersection of the cross of the tee. . The.

column is supported at each end of the horizontal leg by
identical sets of two elastic springs. One spring is fixed at
the far end; the other spring has a ratchet attached to its far
end which permits no additional strain in the spring when the
displacement of the end of the horizontal member exceeds
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F1aurg 1.—8pring-supported column model and foree-displacement dlagram for each apring
system.
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1. If the end of the horizontal member moves upward after
exceeding ¢, the ratchet Iimmediately catches. The
combined force-displacement relation of each spring
system is shown in figure 1. This relation may be regarded
as a simple stress-strain curve that includes.a plastic region
and the phenomenon of strain reversal. If such a column is
assumed perfectly straight and its load is free to change
during bending, an infinity of loads can be found at which the
top of this column can start to assume a deflected position.
This range of loads is included between the tangent-modulus
load for this column and the Euler load. Those loads be-
tween the tangent-modulus load and the reduced-modulus
load require an increase in load during initial bending; where-
as, those loads between the reduced-modulus load and the
Euler load require a decrease in load during the bending
process.

The actions of the spring systems at thestartof bending can
be described by locating the instantanecous center of rotation
of the rigid column. At the tangent-modulus load, the cen-
ter is at the end of the horizontal leg on the side that is not
loading; therefore, no displacement of that spring systemn
occurs. For loads between the tangent-modulus load and
the Euler load, the center lies on the horizontal leg betweert
the two_ends. At the Euler load, the instantancous center
is at the opposite side and no displacement of that spring
system occurs. It isevident, then, that reversal of the spring
system on one side always occurs for these loads except at the
tangent~modulus load when there is no change in the dis-
placement of that side.

An analysis made for the idealized H-section (appendix
C) reveals a similar but somewhat more complex behavior of
a perfectly straight column—that is, the same range of loads
exists at which a perfectly straight plastic column can start
to assime a. deflected shape. (See fig. 2.} Those loads
between the tangent-modulus load and the reduced-modulus
load are associated with an increase in load during initial
deflection; whereas, those loads between the reduced-modulus
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(a) Initial slopes of load-deflection curves. (b) Initlal stress and siraln changns at

confer cross seciion.
Ficurk 2.—Celumn behavior at critical loads,
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Inad and the Euler load are associated with a decrease in
load. The essential difference in the column actions for this
range of loads is the pattern of strain reversal which occurs
during bending. At the tangent-modulus load, none of the
strains over the entire volume of the column reverse at the
start of bending; however, the strain is just stationary at the
center of the column on the convex side. At the reduced-
modulus load, the reversal is complete over one side of the
column as usually presented in the double-modulus theory
and the strainsare stationary along the surface that separates
the reversed and unreversed regions. At the Euler load, all
the strains reverse over the entire volume of the column
except for the center of the column on the concave side, and
there the strain is stationary. Because the distribution of
stiffness over the length of the column is the same at these
three Ioads, the instantaneous deflected shape is a half sine
wave.

Since the deflected shape of the column at the tangent-
modulus and Euler loads is known and since the instan-
taneous center for strain of the centfer cross section of the
column is on the convex side at the tangent-modulus load
and on the compression side at the Euler load. the initial
slope of the curve of load against center deflection can be
computed for the columns. The slopes obtained here are
valid for columns of constant symmetrical cross section.
At the tangent-modulus load.

‘ dP b
dy. 22 lT
and, at the Euler load,
dP b

dy.” 2p*" %

where b is the distance between the extreme fibers in bending
and p is the radius of gyration of the cross section. At the
reduced-modulus load. this slope is zero.

The analysis of a perfectly straight plastic column leads to
4 range of critical loads. but only the smallest, the tangent-
modulus load, can be accepted as being significant for real
columns. No real column is perfectly straight; therefore,
it is reasonable to define the significant critical load as one
based on the behavior of a slightly bent column as the initial
lack of straightness vanishes. In order to demonstrate
the results of such a point of view for defining the critical
load, a mere complete analvsis of the spring-supported
column was made in which a small intitial deflection d,
of the top of the column was included. In making such an
analysis, 1t is necessary to keep track of the displacements
of the individual spring systems to be certain that the correct
force-displacement relations are being used. The possible
combinations for the spring systems are shown in figure 3.

The results of the analysis of the column with various
amounts of initial deflection are shown in figure 4. Also
shown are the limits of thé regions in which the various
force-deflection relations exist. The most significant point
to be observed is that, as the initial imperfection decreases,

272483 —54—20

_modulus.

o Left spring system
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(8} Elustle. (b) Elustle-plastic,

(¢) Plaatlc. (d) Plastic with elastie unloading.
FiGURE 3.—Four force-displacement combinations for the spring systems.

the tangent-modulus load is the limiting load at which there
is a sustained increase in the bending deflection of the
column. It should also be noted that the reversal of the

spring deflection always occurs below the tangent-modulus

load and occurs just at that load as the initial imperfection
vanishes. . .
¢ THE JMAXIMUM LOAD

The load-deflection curves for the simple column, given
in figure 4, are all approaching the reduced-modulus load
at large deflection. This is a consequence of the linearity
of the spring systems and is to be expected if one considers
the deflected column with reversal as a new elastic column,
the stiffness of which is measured by the reduced modulus.
This behavior is not typical of the actions of real columns
because, as the load on the column increases, the strains
increase and there is a continual reduction of the tangent
How rapidly the tangent modulus decreases
depends on the shape of the stress-strain curve; therefore,
the maximum strength of a column of a given geometry is
expected to depend on the stress-strain curve of its material.

To study the effect of the shape of the stress-strain
curve on the maximum strength of a2 column, an analysis
was made of the behavior of the H-section column after it
had become critical and started to bend at the tangent-
modulus load. The analytical stress-strain curve for the
material of this column was assumed to be of the form sug-
gested by Ramberg and Osgood (reference 7). This form

289 .
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is summarized in figure 5. The stress oy is usually close

to the yield stress of the material.
parameter for this study is the exponent n.

The most significant
Low valucs of

n correspond to gradually curving stress-strain curves, and,

With alummum alloys; “hclea,s, values between 3 and 5
apply to stainless steels.

|- asn mc‘reasos the curvature changes more rapidly at 1110
* Telues of n in the neighborhood of 10 are associaled

Magnesium and the low-carbon

steels have stress-strain curves which correspond to values

of n_of 30 or greater.

The study of strain history of the flanges of a column
which starts to bend at the tangent-modulus load shows
the same gencral strain history regardiess of the shape of

the stress-strain curve. At the start of hending,

reversal

of stress begins at the cen ter of the convex side of the column,
As the deflection increases, the region of reversal spreads
rapidly over the convex side of the column and is complete

over the whole convex flange at maximum load.

After

the deflection corresponding to the maximum load is ex-
ceeded, reversal of strain spreads into the coneave side of

the column.

A summary of theload-deflection results that were obtained
for the H-section column when the stress-strain curve and

the tangent-modulus load were systematically varied is..

given in figure 6. The loads arc given in terms of a load
P, that produces an average stress oy in the straight column.

- Two results are significant: First, the smaller the value of

n, the higher the maximum load is in rclation to the tangent-
modulus load; second, the smaller the value.of n, the greater

the deﬁectwn is at which the maximum load occurs.

The

results ohtained for the maximum load are summarized in two
forms: In figure 7, the ratio of the difference between the
maximum load and the tangent-modulus load to the dif-
ference between the reduced-modulus load (had the column

remamed stralght.) and the tangent,—modulus load is plotted
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FI16URE 5—Remberg-Osgood nondimensfonal stress-straln curves.
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as & function of the tangent-modulus load. The maximum
load of eolumns, critical in the plastic stress range, exceeds
the tangent-modulus load by a fairly constant percentage
of the difference between Py and Pr. In figure 8 the
ratio of Pug to Py is plotted as a function of the tangent-
modulus load. In the plastic range the percentage increases
in maximum load over the critical load are roughly constant
for a given value of » and are larger the smaller the value of n.

The dashed parts of the curves in figures 7 and 8 have no
practical significance. Their shape is a consequence of the
fact that the Ramberg-Osgood stress-strain curves have no
proportional limit and are therefore nonlinear in what would
normally be the elastic range. A more correct interpreta-
tion would be to consider the ordinates to be unity in the

dashed regions
CONCLUSIONS

The theoretical study of column behavior in the plastic
stress range led to the following coneclusions:

1. If the behavior of a perfectly straight column is re-
garded as the limiting behavior of a bent column as its
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initial imperfection vanishes, the tangent-modulus load is
the critical load of the column—that is, the load at which
bending starts.

2. The maximum load that an initially straight inelastic
column can support is larger than the tangent-modulus
load. The ratio of the maximum load to the tangent-
modulus load will be larger for columns having stress-
strain curves represented by lower values of the exponent n
in the Ramberg-Osgood representation,

LaNcLEY AERONAUTICAL LABORATORY,
NaTtionaL ApvisorY COMMITTEE FOR AERONAUTICS,
Lanarey Fievp, V., October 16, 1950.



APPENDIX A

SYMBOLS P variable load on column

a coefficients in sine series P, ~ load on straight column causing a strain e,
A cross-sectional area r positive integer used in sine series
b column thickness % : vertical displacement of pivot point of spring-
C\, G, Gs, C, constants of integration supported column
dy initial lateral deflection of spr mg—supported 9’, variable distance along length of column

column model x nondimensional distance along length of column.
d lateral deflection of spring-supported column (:F—z’L). .

mode! T, g varmb!e d1men§10ns of length measured from
e displacement or strain pa. rticular ponts
& displacement corresponding to force P,/2 or y’ . varm_ble de_ﬁectlon . ,

strain corresponding to stress o; 4 nondm_mnsmnal deflection (y=y'0)
E Young’s modulus Y1, Va deﬂ_ectmns ab and z,
E, tangent modulus (de/de) P radius of gyration

do ) T stress

E":R_E at stress corresponding to tangent-modulus load P 0.7E secant yield stress
F force Subseripts:
I moment of inertia ¢ midheight of column
k proportionality factor (x=FkL) ( Vres particular value when reversal occurred
ke, kg spring constants E Euler
K parameter used in Ramberg-Osgood representa- | mqx maximum

tion RM reduced modulus
L Imeasure .of length T tangent modulus
m positive integer L 0 left
n positive exponent in Ramberg-Osgood repre- | R right

sentation

APPENDIX B

ANALYSIS OF SPRING-SUPPORTED COLUMN

Two analyses were made of & simple mechanical model
of a column. First, an infinitesimal-deflection analysis
which showed that, if one assumed a column to be initially
straight, an infinity of equilibrium paths could be found by
which the column can start {o deflect. KEach path was
associated with a definite load. The second analysis was a
finite-deflection analysis of the same column and showed
that, for real columns (which always contain some small
initial imperfection), only the lowest of these loads, the
tangent-modulus load, had any real significance.

If such a column is analyzed by the usual approach, the
Euler load is

Pz=(k1+ka)%' e

where the spring system stiffness k,+k; represents the origi-
nal slope of the force-displacement diagram. Above the
knee of the force-displacement diagram, the stiffness of
eachh spring system for increasing displacements is k;, and
for this column the tangent-modulus load is

202

The double modulus theory gives for this column a reduced
2k (k1 ko)

SF. 11, and therefore a reduced-modulus load

stiffness

2ky(ki+ks) b7 2D:Pr

Pov=— " T=P. 4P,

In the development of the analysis it will be convenient to
mtroduc'e ‘these loads.

INFINITESIMAL-DEFLECTION ANALYSIS

Figure 1 shows the details of the model of the column.
The vertical leg of length L/2 and two horizontal legs cach
of length b/2 are considered rigid and rigidly joined. The
column is loaded at the top of the vertical leg and is con-
strained at the intersection of the two legs so that this point
is free to move vertically and rotate but cannot move hori-
zontally. At each end of the horizontal member, there is a
set of supporting springs. In each spring system, the spring
with stiffness %; is elastic and its grounded end is rigidly
supported; whereas, the spring with stiffness k, has iis
grounded end attached to a ratchet that slides for a constant
P1 kg
2 Eths
in this spring, the ratchet-cemses fo slide and unloading of

force in the spring. On reduction of the foree
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the spring occurs with changes in force related to changes in
displacerent according to the stiffness k. The action of
these two springs of stiffness k; and %; combine to form a
force-displacement relationship for each system similar to an
idealized stress-strain curve with a sharp knee at the force
Pf2 (see fig. 1).

Let us consider possible changes in the equilibrium position
of the straight column that has been loaded with some force P
which is greater than P,. Static equilibrium of vertical
forces and moments about the pivot point requires the
changes in force in the springs to be related to the applied
load and to any change in the applied load by the following
equations:

AF,+AFp=AP

B1)
AFp—AFp—2 ‘ib?’- (P+AP)

The lateral deflection Ad is assumed to be directed to the
left. The displacements of the sets of springs can be related
by geometry to vertical displacement of the column at the
pivot point Au and the lateral deflection of the top of the
column Ad. The displacement of the set of springs on the
left is

Aep=Au-+Ad % (B2a)
and on the right,
Aep=Au—Ad % (B2b)

In order to complete the analysis of the column, force-
displacement relations must be introduced for the spring
systems. The form of these relations depends on three
possible displacement patterns:

(a) ez and ez incressing

(b} ¢, and er decreasing

(¢) e increasing and ez decreasing
In the following sections, these three displacement pattems
are discussed and also included in each ana.lyms is the possi-
bility of e, and ez not changing.

Left and right displacements increasing.—The first
possible force-displacement combination corresponds to the
left and right displacements increasing or remaining un-
changed; that is,

Aep=Au-tAd %g_o

; B3)
A€g=A‘u —'Ad L 2 0
For a load P greater than P;, these changes in displacement
muitiplied by %, give the changes in load as follows:

AFL=(Au +Ad %) by
. B4
AFp=(ru—Ad %) 3

293
Substitution of equations (B4) in equations (B1) gives the

static equilibrium relations that must exist between the
change in the column deflections and the load:

(B58)
®5b)

2k1Au=AP
Ad[P7—(P+AP)]=0

2
where Pr=@% as noted previously.

The problem now is to find solutions to equations (B5)
which do not violate the conditions on the displacements
given by the inequalities (B3). - A trivial solution is that Ad
is zero and that Awu increases for a positive AP. Physically,
this solution would mean that the column remains straight
and continues to compress under increasing load. If, how-
ever, in the moment equilibrium equation (B5b), the
bracketed term is zero, it would seem that any Ad is possible
and the column can bend. During the bending process,
however, the load on the column P-+AP must always be
equal to Py in order to satisfy moment equilibrium; AP must
therefore be zero. If AP is zero, Au is zero, and only zero Ad
can satisfy the inequalities (B3).

Left and right displacements decreasing.—The second
possible force-displacement combination corresponds to the

left and right displacements decreasing or remsaining un-
changed; that is,

b

Aep=Au-t+Ad Zé 0
5 (B6)
Aep=Au—Ad I =<0
Then
aF=(su+ad %) (ko)
B7)
AF=( Au—ad %) (o t-k2)
Static equilibrium requires that
2 (ky+ k) Au=AP (B8a)
Ad[Pg—(P+AP))=0 (B8b)

where Py—(ky--ky) %’

are satisfied for any P if Ad is zero. Physiecally, this solution
would mean that the straight column can lengthen for a
decrease in load. In the moment equilibrium equation
(B8b), it would seem that any Ad is possible if the load on
the column P+AP is Py. If, during the bending process,
the load P+AP must always be Py, then AP must be zero.
If AP is zero, there is no Au, and only zero Ad can satisfy the
inequalities (B6).

If AP is negative, these conditions
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Left displacement increasing, right displacement decreas-
ing.—The third force-displacement _combination corre-
sponds to the left displacement increasing and the right
displacement decreasing or cither displacement remaining
unchanged; that is,

b (B9)
Aeg=Au—Ad Ego
Then . )
(B10)

AFR=(Au.—Ad %) (s )

Static equilibrium requires the following relations between
the load, its change, and the changes in column displace-
ments:

b Az B11)
— kot (2 + DAL =2 ﬁ*b—' (P+AP)

When the previously mentioned relations for Pr, Pg, and
Pry are used, the displacements obtained from the static
equilibrium equations (B11) are '

AuL __
b 2 (1-—-

=)

> (B12)

ég*g(l_i (%

These relations between the change in load and the change
in column deflections are valid only if they are consistent
with the original assumptions for the foree-displacement
relations of the spring systems. Substitution of these col-
umn deflections in the inequalities that define the direction
of spring displacement yields the inequalities

:
(1—
1___
13
Pr r, P
P \pTR)=°
RM . o

Solutions consistent with lateral deflection exist among
the equilibrium equations (B12) and the inequalities (B13)
when the load on the column lies between Pr and Pz. When

REPORT 1072—NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

the load les between Pr and Pgry, lateral deflection is pos-
sible for increases in load; whereas, when the load lies be-
tween Pgy and Pg, lateral deflection is possible only for
decreasing load. If

PrSP< Pry
then
AP
P _
2_;@-;0
b
and if
PR.V_éZ)éPE
then
AP
P, Px ) )
0= -JZ 2E _ B
3

FINITE-LATERAL-DEFLECTION ANALYSIS WITH SMALL INITIALDEFLECTION

The previous analysis has indicated that an infinity of
equilibrium paths can be found by which a perfectly straight
column can undergo lateral deflection. A more realistic
approach is to consider an actual column as one which ad-
mits a small but finite initial imperfection. 1t is of interest,
therefore, to analyze the load-deflection history of the
spring-supported column when such an imperfection exists.

Consider the same spring-supported column which has as
an initial imperfection a small deflection dy of the tip of the
column. Static equilibrium requires that

) Fyt-Fp=P

dotd 1)

Fp—Fp=2P

Geometry requires the following rela,t-xon between the spring
displacements and the column deflection:

’ eL—en=2—%é (B15)
The force-displacement relations of the spring systems, as
in the previous section, depend on the magnitude of the
displacements and the direction in which they are progressing.
During the initial loading, the spring systems are clastic.
As the load increases, the spring system on the side with the
more rapidly increasing displacement becomes “plastic’” and
the column is considered ‘‘elastic-plastic.” If the initial
deflection of the column is sufficiently small, the spring
gystem on the side with the more slowly increasing displace-
ments can also become plastic as the load increases. The
region in which this occurs is considered ““plastic.” If, after
both sides have become plastic, the trailing spring displace-
ment reverses, it does so elastically and the column is con-
sidered “plastic with elastic unloading.”” A summary of
these possible force-displacement combinations is given in
figure 3. The column load-deftection relations in these four
regions are found as follows.
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Elastic range.—In the elastic range the force-displacement
relations for the springs are

FL=(k1+k2)e[,}
Fr=(ky+ ke

Substitution of these relations in the static and geometric
relations vields the following solution for the lateral deflection
of the column:

(B16)

(B17)

bk +ky) .
L

where Pg= is the Euler load for this column. The

limit of the elastic range is reached when the force in the more
rapidly loading spring system equals P;/2. The elastic region
in the plot of column load against lateral deflection is bounded
Ly the coordinate axes and the straight line given by

d_1 (i_f_& =0
b 2 Pg PTPE__

Elastic-plastic range.—In the elastic-plastic range a new
set of force-displacement relations exists for the springs.
The relations are

FL=k15L+k231?
FR=(k1+k2)-¢sS

The lateral deflection of the spring column in this range is
defined by the equation

(B18)

lﬁ(’ﬁ_l)_iﬁ’_ﬂ 1 Ex__&)
‘_I_=2 PT‘ PR.H' PR.\{ b 4 PT PR. (Blg)
h P _ '
Py
If
do 1 Py )
b>2 ( /_+Pr

latera]l deflection grows in the elastic-plastic range and ap-
proaches infinity for values of the load approaching as a
maximum value the reduced-modulus load Pgy. Before this
maximum load is reached, the small spring displacement,
which has remained elastic, always reverses its direction of
displacing. For large initial deflections, this reversal occurs
in the elastic range or at the instant the column enters the
elastic-plastic range. If the initial deflections are small
enough, reversal occurs later. The loci of loads and deflec-
tions at which reversal occurs in the elastic-plastic region lie
on the curve

L ()

%%(1‘ /Pl +p,

lPl (1
‘7 P,- 4P,
If

the spring displacement on the right, which has always been
the smaller one, can also become plastic. The locus of points
at which this cha.nge oceurs is given by the straight line

b 2 fi Pl)—

Plastic range.—The plastic force-displacement relations
for the springs are

Fr=ke,+ke
(B20)

Fp=kieptkse,
The lateral deflection in this range is given by the equation

(821)

As the load and lateral deflection increase in the plastic range,
the spring displacement on the right reverses and, conse-
quently, changes the spring force-displecement relation.
Reversal of the direction of the spring displecement in the
plastic range takes place on the curve

) OPT(I )=°

Plastic range with elastic unloading.—After reversal has
occurred in the plastic range, the force-displacement relations
for the springs are

Fo=kier+k:e }
Fe=(ki+kpertkiles—(e)rel
The column lateral deflection is defined in this range by the

) (
l RM »

(B23)
As the load increases, the lateral deflection increases and
approaches infinity as the column load approaches Pey, the
reduced-modulus load.

Numerical example.—The lateral-deflection analysis of
the spring-supported column was applied to a particular
column. This column is defined by choosing a ratio of

Pr 9 -

P,

(B22) -

P dy 1
Pub2

d_ 2Pr Pm{ 1)
b

L _,

PR.H

and a ratio of
Pr_9
P,

Such a column has a ratio of
Pu 4
Pr 3

The results of the analysis are given in figure 4 for various
values of initial deflection of the column.
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APPENDIX C

ANALYSIS OF IDEALIZED E-SECTION COLUMN

The analysis of thesimple spring-supported column, givenin
appendix B, has served the purpose of showing the meaning
of the tangent-modulus critical load in inelastic column be-
havior. The model is, however, a crude representation of
an actual column and has only one possible deflected shape.
The analysis fails to reveal another phenomenon associated
with a real column, that is, the growth of the region of the
column over which strain reversal takes place. A simple
model that can exhibit the growth of reversal along its length
is an idealized H-section column. Such a column consists
of two flanges of equal area separated by a web of negligible
thickness. No shear strain can occur in the web so that
ordinary beam theory can be used to relate the curvature of
the lateral deflection of the column to the strains in the
flanges. Furthermore, the state of stress in each flange is
assumed to be one-dimensional so that in the plastic range
the stresses can be related to the strains by the ordinary
stress-strain curve for the material. If strain reversal occurs
in the plastic range, the unloading takes place elastically.

INFINITESIMAL-DEFLECTION ANALYSIS

An infinitesimsal-deflection analysis of an originally straight
H-section column reveals the same situation that exists when
such an analysis is made for the spring column; that is, a
range of loads exists for which a perfectly straight column
can start to assume a deflected position of equilibrium.

Derivation of the differential equations.—At any section
along the length of the column, static equilibrium requires
that

AFL+AFR=AP

(C1)

Geometry requires that the curvature be related to the
strains on either side of the column by the equation

dEAy__ _AGL—AGB
dx? b

(C2)

In order to complete the analysis, the stress-strain rela-
tions for the flange must be defined. At every section along
the length of the column there are three possible combina-
tions of directions of straining: e, and ¢z increasing, e, and
¢g decreasing, and ¢, increasing, ez decreasing. Differential
equations relating the column deflection to the load are
derived as follows for these combinations:

206

If the strains e, and ¢z are increasing, the force-strain
relations for the flange are

AE,
2

AE,
2

AFL=A€L

(€3)
AFR=AGR

Substituting these relations in the equation of geometry
(C2) and eliminating AFy and AF by the use of the static
equilibrium equations (C1) yields the following differential
equation in whieh the term of higher order has been neglected:

d’Ay

Tt =0 €4

If the strains ¢, and ey are decreasing, the force-strain
relations for the flanges are

AE

AFL—AE;L 2
(€3)
AFE—AEB :12E

Substituting these results in the equsation of geometry (C2)
end making use of the static equilibrium equations (C1)
yields the following differential equation relating the column
deflections to the load:

d’Ay 4P
If the strains ¢, are increasing and the strains ez are de-
creasing, the force-strain relations for the flanges are

AE,
2

AFR—AEB :12E

AFL=A€L

(&)

The differential equation relating the inerement of column
deflection to the load and its change is

)A - _A£<_1__L)
E, E A\E,E

Initial deflection with increasing load.—If the H-section
column deflects under end load, the sections along its length

day | 2P
dz* b4

(C8)



APPENDIX C

ANALYSIS OF IDEALIZED H-SECTION COLUMN

The analysis of thesimple spring-supported column, givenin
appendix B, has served the purpose of showing the meaning
of the tangent-modulus eritical load in inelastic eolumn be-
havior. The model is, however, a crude representation of
an actual column and has only one possible deflected shape.
The analysis fails to reveal another phenomenon associated
with a real column, that is, the growth of the region of the
column over which strain reversal takes place. A simple
model that can exhibit the growth of reversal along its length
is an idealized H-section column. Such a column consists
of two flanges of equal area separated by a web of negligible
thickness. No shear strain can occuwr in the web so that
ordinary beam theory can be used to relate the curvature of
the lateral deflection of the column to the strains in the
flanges. Furthermore, the state of stress in each flange is
assumed to be one-dimensional so that in the plastic range
the stresses can be related to the strains by the ordinary
stress-strain curve for the material. If strain reversal oeccurs
in the plastic range, the unloading takes place elastically.

INFINITESIMAL-DEFLECTION ANALYSIS

An infinitesimal-deflection analysis of an originally straight
H-section column reveals the same situation that exists when
such an analysis is made for the spring column; that is, a
range of loads exists for which a perfectly straight column
can start to assume a deflected position of equilibrium.

Derivation of the differential equations.—At any section
along the length of the column, static equilibrium requires
that

AF-FAFp=AP

,; €1
AF,— -R=2%(P+M)

Geometry requires that the curvature be related to the
strains on either side of the column by the equation

dQAy__AeL—AeR
dz? b

(C2)

In order to complete the analysis, the stress-strain rela-
tions for the flange must be defined. = At every section along
the length of the column there are three possible combina-
tions of directions of straining: ¢, and ¢z increasing, e, and
¢g decreasing, and ¢, increasing, ez decreasing. Differential
equations relating the columm deflection to the load are
derived as follows for these combinations:
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If the strains e, and ez are increasing, the force-strain
relations for the flange are

AFL:;‘_\GL A‘)Bj‘
_ (€3)
AFB=A€RA5‘J

Substituting these relations in the equation of geometry
(C2) and eliminating AFy and AFR by the use of the static
equilibrium equations (C1) yields the following differential
equation in which the term of higher order has been neglected:

d*Ay , 4P

drt AR, V=0

(C4)

If the strains ¢, and eg are decreasing, the force-strain
relations for the flanges are

AE

.'A.FL=A€’L 5
(C3)
Angﬁé’RATE

Substituting these results in the equation of geometry (C2)
and making use of the static equilibrium equations (C1)
vields the following differential equation relating the column
deflections to the load:

d*Ay , 4P

zt T paptt=r0

(C6)

If the strains e, are increasing and the strains e are de-
creasing, the force-strain relations for the flanges are

AL,
2

AFL=A€’L

z €D
AFR=A€R:‘12;

The differential equation relating the increment of column
deflection to the load and its change is

Ay 2P (1 | 1);\. __iP_(_l___L
det TBANE, TE)YTTAT\ETE

(C8)

Initial deflection with increasing load.—If the H-section
column deflects under end load, the sections along its length
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must be straining according to one of the three possibilities
previously mentioned. If the bending takes place under in-
creasing load, it is reasonable to assume that, in the regions
near the ends of the column, both strains are increasing
during bending. At the same time, in & region near the
center of the column the strains on the left increase while
those on the right decrease.

Therefore, diferential equation (C£) may be assumed to ap-
plvatthe ends of the column. The solution to this equation is

Ay, =C,sin \/ 4P :rl

where 2, is measured from the end of the column and the
cosine term has been dropped in order to satisfy the condition
of zero deflection at the end of the column. At the center
of the column, differential equation (C8) applies and its
solution is

(C9)

. [2P 1 AP E—E,
._\y,_C’,cos VI )l‘n 2P ETE, (C10)

-
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where r. is measured from the center of the column and the
sine term has been dropped because there is no slope at the
center of the column. Three arbitrary guantities are to be

determined: the constants C; and (% and the increase in load .

AP. These quantities are determined by the conditions that .
must exist at the junction between the region in which all
strains increase and the region in which the strains on the
convex or right side of the column reverse. If the region
of increasing strains is of length kL, at the junction

I1=kL

1—2k
2

L

the following conditions must be satisfied:

Yy1—AY.=0
dAy, dAy,
de.  dz, =0 (C11)
A€g= 0

Substitution of the deflected shapes Ay, and Ay, from equation (C'9) and equation (C10), respectively, yields the following

homogeneous system of equations in (7, (%, and AP:

4Pk2L?

P(—2F LHELEy

!\S VFaE, —CS\ T SR AERE, spETE| | &
P sin —\/fzﬁ %‘2 0 —g AP
Solutions exist for values of the load and regions of reversal (1—2k)L which satisfy the transecendental equation
tan V3 41)}_1%“ \/ e 92612);1.%(11?+E,) =V E;_EE' (C13)

The principal roots of this equation yield values of load lying between the tangent-modulus load and the reduced-modulus
load with corresponding regions of reversal on the convex side ranging from an infinitesimal length at the center of the
column to the entire side of the column. The shape of the deflected column is a half sine wave at these two limiting
loads. The rate of change of the load in the column to the change in deflection at the center of the column is, at the
tangent-modulus load,

AP
AY.

2P;
b

and, at the reduced-modulus load,

AP
AY.
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Initial deflection with decreasing load.—By a process
similar to the one used for initiel deflection with increasing
load, cquilibrium paths can be found by which a straight
plastic column can deflect under decreasing load. Assume
that, for a region near the ends of the column, the strains on
both sides are decreasing; then, differential equation (C6)
applies in this region. The solution to this differential
cquation that satisfles the condition of zero deflection at the
end of the ecolumn is

N

m"x] (C 1 4)

A=, sin

In the region at the center of the column, the strains on the

REPORT 1072—NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

convex side are assumed to decrease and those on the concave
side, to increase; therefore, differential equation (C8) applies
in this region. The solution for the deflected shape in this
region is

SP(EYEy) AP, E,~E
M=Cicos yiipg, =tapdnrm, ©9
A relation between the arbitrary quantities ¢4y, €, and AP
is found from the three conditions that exist at the junction
of the region in which all strains are decreasing and the

region In which only the strains on the convex side arc

. . . —2k
decreasing. At the junction, wy=kL and 9'2=—-1——2£—L where

kL is now the length of the region of decreasing strains and the three conditions that must be satisfied are

A‘yl'—'Ay2= 0

dAy1_dAy2 )

a5 dz. 0 (C16)
Aeg=0

These three conditions Jead to the following homogeneous system of equations in (4, (', and ADP:

. [4PEL? P2k I(EL+E) b E—E
Sy Gz —cos S AEE, ~3PETE) |
iPFL: - JE+E, [PU—2k?INELE -
cos\/ BAE T "2iET'°°S ( 26'-')AE(E,'+ : 0 Ci|=0 (€17
— o ey
P S“‘\/ TAE R 3 AP

Consistent solutions exist among the quantities C, Cy, and AP, which also satisfy the assumed directions of strain-

ing if the load and the regions of reversal satisfy the equation

1P
4Pk L N

PO—2k¥L{EYE) |E¥E,

tan AR tan

and if AP is negative.

20CAEE,

2K,

Solutions of these equations exist for loads lying between the reduced-modulus load and the Euler load. At these two

(C18)

limiting loads, the deflected shapes are sinusoidal. At the reduced-modulus load, strain reversal occurs over the whole
convex side of the column; whereas, at the Euler load, it is complete over both the convex and conecave sides. At the
reduced-modulus load

AP
a0
and at the Euler load
AP 2P,
Ay, b

Initial load-deflection relations at tangent-modulus load and Euler load for arbitrary cross section.—A general result
which can be induced from the study of the spring-supported column and the H-section column is the initial slope of the
load-deflection curve for any constant-section column at the tangent-modulus load, at the reduced-modulus load, and at
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the Euler load. At the tangent-modulus load, the strain at
the center of the convex side of the column is statiopary;
therefore, the instantaneous center of rotation for strains in
the cross section is at this point. The distribution of strain
across the column is uniform with a maximum value at the
concave side.  If the strain on the coneave side is (Aeg),, the
inerease in load would be as follows for & symmetrical cross
section:

AP=

Ao Al
__L_g__l' €19

where A is the area of the cross section. The change in
strain Aey is related to the curvature of the column by
esquation (C2) and is, at the center,

CAFL)c I:__(_\J gin L):L —Ay.: Iz

Elimination of (Ae;). between equations {C19) and (C20)
vields

(C20)

or

At the reduced-modulus load, the slope is zero. At the
Euler load, the instantaneous center for strains on the cross
section is at the center of the column on the concave side;
therefore, by & process similar to that employed at the
tungent-modulus load, this slope can be shown to be

AP b
VAR PR
FINITE-DEFLECTION ANALYSIS

An exact finite-deflection analysis in the plastic range is
complicated by two factors. First, the deflections may
become large enough that the more exact definition of curv-
ature of the column is required. In the analysis which is
developed here, the usual small-deflection definition for
curvature is used and is justified by the results that show the
most significant actions to take place for real columns at
small displacements. Second, as lateral deflection proceeds,
the strains on the convex side reverse their direction of
straining and elastic unloading of the column elements takes
place. This second phenomenon, referred to as the growth
of the reversed region, was not so well understood and
required some investigation. In order to investigate the
effect of the growth of reversal, & finite-deflection analysis
was made for an idealized H-section column made of material
having & constant tangent modulus in the plastic range.

Another gnalysis was made in which u more realistic stress-
strain relation for the material was used to study the effect’
of the shape of the stress-strain relation on the strength of
columns.

Anglysis of H-section column for constant tangent modu-
lus.—The previous analysis of the spring column has shown
that a perfectly straight column may be assumed to start
deflecting at the tangent-modulus load. The static relation-
ship between the loads in flanges of the H-section and the
applied load are given by the following equations:

FL+FE=P
(C21)

Fr— 3_2Pg

The geometric relation between the strains in the flanges and
the column deflection is

dzy Er—E€p

dzr b

(C22)

Furthermore, in some part of the column, the strains are
assumed to continue to increase; then, for constant tangent
modulus ebove Py,
Py, AE

T 5 T(CL'—'

F ——— er)

(C23)

L Ar e

where e¢p is the uniform strain that exists everywhere in the
column at the tangent-modulus load. The differential equa-
tion which relates the deflection to the applied load is
obtained by substitution of the static and load strain rela-
tions into the geometric relation and is as follows:

d2y 4P

dr2+ bq ‘1Ery 0 (024)
If at some section of the column the strains on the convex

(right) side start to decrease, then

Fa=Fra—2 leara—ea) (C25)

where the subseript rer refers to the load and strain at which
reversal of strain has taken place. The differential equation
relating load to deflection along this part of the length can
now be written as follows:

fii-b;+b‘“s{(E+F¢) b[P O(Fg)m:KE E) (C26)




300

These equations may be put in nondimensional form by
introducing the following notations:

Eb24

=5 o= P
: p._mbd 2BE,  , _rEbA
RM=3T?T ETE, LAY A

In the unreversed region

d(x')f'"’ (7_9—) y'=

and in the reversed region

d2y’ y
d(-l")2+ P R.\{ 2

(€27)

II,JT 2(FR)"’:] (P" 1) (028

The difficulty involved in determining exactly the deflections
arises from the fact that the growth of the reversed region is
not known initially but must be determined as deflection
proceeds. An approximate solution can be made which is
based on the method of collocation and can be extended to
any required degree of accuracy. The solution is developed
by assuming that the deflections of the column can be
expressed as the finite trigonometric series of odd sine terms

=i1a,' sin (2r —1)rz’ (C29)
=

Such a series satisfies the boundary conditions and is sym-
metrical with respect to the center of the column. The
coefficients of the series are obtained from the set of simul-
taneous algebraic equations obtained by substitution of the
series into the differential equations (C27) and (C28) and
satisfying them at m equidistant stations in the half-length
of the column, Of the two differential equations, the one
that applies at a given station depends ou the direction of
straining. It is therefore necessary to keep & check on the
direction of straining at each station and to use the applicable
equation when the direction of straining changes. The
analysis can be started because the infinitesimal-deflection
analysis has shown that, at the stert of bending at the tangent-
modulus load, only the strains at the center of the column
have reversed. As the load increases, the reversed region
spreads from the center of the column toward the ends.

The simplest approXimate solution is obtained by the use
of a single sine term which satisfies only the conditions at
the center of the column. If

y' =y sin ~rz’

substituting this deflection shape in the differential equation
(C28) and realizing that reversal occurs immediately at the
center yields the following approximate solution for the
deflection of the center of the column:

G0
+(1-pz)

- (C30)
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The deflection of the center line of the column as P exceeds
Pr is given in figure 9. Also shown are the results obtained

. . 1 . .
by again assuming Er=5 E with two, three, and five sine
¥ agamn =2 :

terms for the deflected shape of the column and by satisfying
the equilibrium and stress-strain relations at the correspond-
ing number of equidistant points in the half-length of the
column. All these solutions indicate that the maximum
load on the column will approach the reduced-modulus
load for large deflection because of the assumed linearity of
the stress-strain curves. The solutions further indicate that
relatively few terms in the series are required for an accurate
solution of the load-deflection history of the column.

Analysis of H-section column with a nonlinear stress-
strain curve,—The finite-deflection analyses of both the
spring-supported column and the H-section column have in-
dicated that, for a constant tangent modulus in the plastic
range, the maximum load for a column approaches the
reduced-molulus value at a large deflection.  Inorder to make
a study of the effect of a continually decreasing tangent
modulus on the strength of an H-section column, & finile-
deflection study was made by using a more realistic stress-
strain curve. The Ramberg-Osgood representation of the
stress-strain curve (reference 7) was chosen for the study
because it fits closely & wide class of materials used in air-
craft construction. The Ramberg-Osgood representation of
the relation of stress and strain states that the strain is

=g (5)

where E, K, and n are chosen so that a suitable fit is obtained

(C31)
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F1aURE 9.—Load-deflectlon curves for ideallzed H-section column with constant tangent
maodulas in the plastic range.
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to the stress-strain curve. A recommended procedure for
determining the three parameters is suggested by Ramberg
and Osgood. The quantity E should be the initial elastic
meodulus, and if

- 3

K=3(%)"
then oy is the stress at the intercept of the stress-strain
curve and a line through the origin with a slope 0.7 of the
elastic modulus. The stress o; is approximately the yield
stress defined by the 0.2-percent offset. The quantity n is a
measure of the sharpness of curvature of the stress-strain
curve at the yield stress. Smoothly varying stress-strain
curves that are typical of stainless steel have values of n
between 3 and 5. The values of n for the aluminum alloys
are about 10. Very large values of n are associated with
the magnesium alloys and the mild steels.

The static and geometric relations are the same as those
used in the analysis of the H-section with constant tangent
modulus. Because of the form of the Ramberg-Osgood
stress-strain relationship, strain in terms of force is more con-
venient,  If the strains are increasing. then

L I}EJF (
= ,{é‘”f (AE)i H(AE

where P, is the load on a straight column for which the
average stress is oy, the yield stress. Substituting these
strain-force relations into the geometric and static relations
and making use of the following relations

T:Erbgfl E _ 3 PT
S Ee(E)

vields the following differential equation:

I—-n (QFL
(C32)

¢

u'= !

7
=1

S b

PT=

&y’ = i
d(r"*" Pr 3n &)"{P,y'{"
11 '- pJ
2 (p ) a2y —a -2y} =0 (C33)

The strain-force relations when reversal has taken place are

9F, 3 P, [2F,\"
=T traE( Pl) Can
2F, 3 P, o)

=TIt 3E| TP,

O(FR) m:]n

These relations give the following differential equation for
the reversed region:

r_;f.: )’+_&~+3n P) (P ’+"8{(£) (I+2y)—

Pt
[’(F“)’“] }) 0 (C35)
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After the maximum load in the column is reached, there are
sections of the column for which the strains on both sides of
the column are decreasing. The strain-force relations in
this region are

e QFL 1 3 PL 2(FL)T¢l]‘
LTAETT AE P, (C36)
‘)FR 3 P] Q(Eg)ru

AETT AR P ]

The differential equation which is applicable in this region is

fot Py e
20T (can

The solution of the system of differential equations was
carried out by the same procedure used in the analysis of
the H-section with a constant tangent modulus. A solution

oy (s

Substitution of the series into the appropriate differentisl
equations and satisfying them exactly at an equidistant
number of stations along the length of the column yields &
system of algebraic equations. The system of equations is
nonlinear because the moduli are a function of the dis-
placements.

The simplest approximate solution is
tuting

obtained by substi-

y'=y!sin nz’

in the differential equation (C35) and satisfying the equation
The nondimensional relation

at the center of the column.
between the center-line displacement and the applied load

is then obtained from the equation
P\ Pr\*
) [+(7)

(C38)

98 o 228,
(1+2y)" (P Vep =73 ¥

in which use is made of the fact that reversal oceurs at the
center of the right side of the column at the tangent-modulus
load. Solutions of equation (C38) for various values of »
and for various ratios of the tangent-modulus load to the
yield-stress load P; are given in figure 6. The same non-
dimensional results are obtained in the analysis of the spring-
supported column.

In order to study the error due to fixing the shape as a
single sine curve, solutions were made with three sine curves.
These solutions were made for n=2 and 10 and for a ratio
of tangent-modulus load to yield-stress load of unity. Figure
10 shows a comparison of the results of these caleulations
with those obtained for & single sine curve. The comparison
indicates & slight reduction in the maximum load and an
increase in the deflection at which maximum load occurs.

The amount of the difference between the tangent-modulus
load and the reduced-modulus load which the H-section
column could actually support were cbtained from the anal-
ysis summarized in figure 6 and are given in nondimensional

‘was assumed in the form of a finite series of odd sine terms. .



302 REPORT 1072—NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

=2

f40F

LO8TF

- LU6F

Number of terms
in sine sares

G4
f
—————— 2
.02 =10
LOOT
L I i ] I 1 H L J
Q £ &
yc
b

Freure 10.—Comparlson between one- atd three-term slne-serles solutions of lead-deflection
curves for ldealized H-section column

form in figure 7 for various values of n. As n increases,
less of the difference is developed for columns critical in tho
plastic range.

The relation of the maximum load to the tangent-modulus
load is sumxnarzzed in figure 8 for various values of » and for
columns which are criticul at various stress levels.

In figures 7 and 8, the dashed parts of the curve were not
calculated and are estimates of what would be obtained from
the analysis using the Ramberg-Osgood form of the stress-
strain relation. These dashed parts of the curve are (rivial
and misleading and are caused by the fact that the analylical
form of the stress-strain curve has no truly linear clastic
region. " In the clastic region, no difference should exist be-
tween the maximum load, the tangent-modulus load, and the
reduced-modulus load (large deflection effects excluded).
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